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1. INTRODUCTION 
     Ocean covers 70% of the earth surface. It offers 
tremendous either biological or mineral resources as 
well as the possibilities for the navigation and resort 
for human beings. It is of great importance to develop 
and utilize the ocean resources with the concepts of 
sustainable development. In order to improve the 
sustainable development of ocean resources, the well 
understanding and acknowledgement of 
oceanographic and meteorological phenomena should 
be emphasized. 
     The ocean is now well known to play a dominant 
role in the climate system, because it can initiate and 
amplify climate change on many different time scales. 
The best known example is inter-annual variability of 
El Niño [1] and the potential modification   of the major 
patterns for oceanic heat transport as a result of 
increasing greenhouse gases [2]. Yet the ocean has 
been very much under measured for most of the 
history of Ocean Science. Even though systematic 
observations began in the 1880s with pioneering 
observations by Nansen et.al [3], the seagoing and   
theoretical efforts were mainly oriented toward 
describing large scale circulation [4], which was often 
regarded as steady for lack of more detailed 
information. To gain some appreciation for the 
model’s ability to simulate coastal Ocean circulation 
Blumberg and Mellor [5, 6, 7, 8, 9, and 10] has 
investigated the potential impact, mathematical 
modeling, and physical behavior for their model. 
These applications include a simulation of the tides in 

the Chesapeake Bay, a simulation of the coastal 
circulation, off long Island, New-York, and a 
computation of the general circulation in the 
Middle-Atlantic and South-Atlantic Bights and in the 
Gulf of Mexico. 
     Ezer [11] studied the importance of Ocean 
circulation model. He has created and maintain POM 
web site. Institutionally the model was developed and 
applied to Oceanographic problems, the Geophysical 
Fluid Dynamics, Laboratory of NOAA and   Dynalysis 
of Princeton. 
     Hence our aim is to study explicit finite difference 
solution of transient heat and mass transfer flow through 
salt water in an ocean with heat generation.  Explicit 
finite difference method has been used to solve the 
problem with different time step.  
 
 
2. MATHEMATICAL MODEL OF FLOW 
     Introducing the Cartesian co-ordinate system the 
x-axis is chosen along the plate in the direction of flow 
and the y-axis is normal to it. Initially we consider that 
the plate as well as the fluid is at the same temperature 

( )T T∞  and the Salinity level ( )S S∞  everywhere in the 
fluid is same. Also it is assumed that the fluid and the 
plate is at rest after  the plate is to be moving with a 
constant velocity. In this case the plat has been 
considered vertical. 
     0U is its own plane and instantaneously at time 

0t > ,the temperature of the plate and spices salinity 
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raised to ( )wT T∞>  and ( )wS S∞>  respectively, which 
are these after maintained constant where wT , wS  are  
temperature and spices salinity at the wall and T∞ , S∞  
are the temperature and salinity of the spices far away 
from the plate  respectively. The physical model is 
furnished in the figure1.  
Under the boundary layer approximation the governing 
equation for the transient heat and mass transfer through 
salt water in an ocean with heat generation are given 
below 
The continuity equation 
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The Salinity equation 
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The temperature equation  
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The initial and boundary conditions are 
, 0, 0,0 ,u v T T St S∞ ∞= = → →≤       everywhere 

0, 0, 0, ,u v T T S St = = → ∞ → ∞f    at       0x =  
      0, 0, ,u v T T S S= = → ∞ → ∞      at         0y =       (5)      
        0, 0, ,u v T T S S= = → ∞ → ∞    as      y = ∞   
where υ  is the kinematic viscosity, sK is the thermal 
conductivity for salinity, TK  is the thermal conductivity 
for temperature, sF  is the molecular diffusion, pC  is the 
specific heat at constant pressure, U is the uniform 
velocity.  
 
 
3. MATHEMATICAL FORMULATION 
     Since the solution of the governing equations under 
the initial and boundary conditions will be based on an 
explicit finite difference method. It is required to make 
the equations dimensionless. For this purpose, we 
introducing the following dimensionless variables in 
equations (1) to (5) and get the following equations (6) to 
(11) and the initial and boundary conditions; 
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And the non-dimensional boundary conditions are; 
 

, 0, 0, 0, 00 U V T Sτ ≤ = = = =  everywhere (10)          

0, 0, 0, 0, 0U V T Sτ > = = = =  at 0X =  

          0, 0, 1, 1U V T S= = = =    at 0Y =                   (11)  

           0, 0, 0, 0U V T S= = = =    as  Y = ∞  

     where Prandtl number  r
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4. NUMERICAL SOLUTIONS 
     In order to solve the non-dimensional system by the 
explicit finite difference method, it is required a set of 
finite difference equations. For this, a rectangular region 
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Fig 1. Physical model and coordinate system
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of the flow field is chosen and the region is divided into a 
grid of lines parallel to X and Y axes, where X-axis is 
taken along the plate and Y-axis is normal to the plate. 
Here we consider that the plate of height ( )max 25X =  i.e. 

X varies from 0 to 25 and assumed ( )max 25Y =  as 
corresponding to Y →∞  i.e. Y varies from 0 to 25. 
There are ( )250m =  and ( )250n =  grid spacing in the X 
and Y directions respectively as shown in figure 2. It is 
assumed that X∆ , Y∆  are constant mesh sizes along X 
and Y directions respectively and taken as follows, 

( )0.1 0 25X X∆ = ≤ ≤  and ( )0.1 0 25Y Y∆ = ≤ ≤   with 
the smaller time-step, 0.001τ∆ = . 
         X    
 
  i m=  
 
   2i +  
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   0i =                                  Y∆                                     
       0j =        1j −         j        1j +       2j +   j n=               

     Y  
  Fig 2. Finite difference space grid. 
 
     Let U ′ , V ′ , T ′  and S ′   denote the values of  U , V , 
T  and S  at the end of a time-step respectively. Using 
the explicit finite difference approximation, we obtain 
the following appropriate set of finite difference 
equations; 
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with initial and boundary conditions 
00 0 0
,, , ,0, 0, 0, 0i ji j i j i jU V T S= = = =                               (16)    
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     Here the subscripts i  and j  designate the grid 
points with X  and Y  coordinates respectively and the 
superscript n represents a value of time, .nτ τ= ∆  where 

0, 1, 2,....n =  The stability conditions of the method are 
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 and convergence criteria 

of the method are 0.08rP ≥  and 0.20sP ≥ .And the fixed 
value of heat source parameter α=0.5. 
 
 
5. RESULTS AND DISCUSSION 
     In order to discuss the physical situation of the model 
we have computed the numerical values of the 
non-dimensional velocity ( ),U  temperature ( )T  and 
salinity ( )S  with the boundary layer for Prandtl number 
( ),rP and modified Prandtl number ( )sP  for salinity ,with 
the arbitary values of Grashof number ( ),rG modified 
Grashof number ( )sG and heat source parameter ( )α .  
     To get the steady-state solution, the computations 
have been carried out up to dimensionless time  80τ =  
the result of the computations  show little changes in the 
above mentioned quantities after dimensionless time 

60τ = have been reached. Thus the solutions of the 
variables for 80τ =  are essentially steady-state. Hence 
the velocity, salinity, temperature profiles are drawn for  

10τ =  and 80τ = .  
     The effect of Changing Prandtl number is shown in 
the Figs. 3-5. Here the value of Prandtl number is taken 
0.50, 0.71, 1.0, 7.0.  And the fixed value of modified 
Prandtl number ( 1.0)sP = . The effect of modified Prandtl 
number ( )sP  shown in the figs. 6-8. The value of the 
modified Prandtl number ( )sP is taken at the different 
salinity percentage in the ocean. For 15% salinity the 
value of ( )sP is 8.234, 25% salinity the value of ( )sP is 
10.234, 30% salinity the value of ( )sP is 11.234, 35% 
salinity the value of ( )sP is 13.234. For the value of 
modified Prandtl number ( )sP  we use the fixed 
value 7.0rP =   1.50,rG = 1.0,sG = 0.50α = . 
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Fig 3.Salinity profile for different values of rP  at time 
10,80with 1.0, 1.50, 1.0, 0.50s r sP G Gτ α= = = = =  
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Fig 4. Temperature profile for different values of rP  at 
time 10,80with 1.0, 1.50, 1.0, 0.50s r sP G Gτ α= = = = =  
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Fig 5. Velocity  profile for different values of rP  at 
time 10,80with 1.0, 1.50, 1.0, 0.50s r sP G Gτ α= = = = =  
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Fig 6. Salinity profile for different values of sP  at 
time 10,80with 7.0, 1.50, 1.0, 0.50r r sP G Gτ α= = = = =  
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Fig 7.Temperature profile for different values of sP  at 
time 10,80with 7.0, 1.50, 1.0, 0.50r r sP G Gτ α= = = = =  
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Fig 8.Velocity profile for different values of sP  at 
time 10,80with 7.0, 1.50, 1.0, 0.50r r sP G Gτ α= = = = =  
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6. CONCLUSION 
     It is observed that, for different values of Prandtl 
number 
a) Salinity distribution increases as rP  increase. 
b) Temperature distribution decreases as rP  increase. 
c) Velocity distribution decreases as rP  increase. 
 And for different values of Modified Prandtl 

number 
d) Salinity distribution decreases as sP  increase. 
e) Temperature distribution increases as sP  increase. 
f) Velocity distribution decreases as sP  increase. 
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8. NOMENCLATURE 
 
Symbol Meaning Unit 
x, y Cartesian coordinates  
u, v Velocity components ( -1ms ) 
υ  Kinematic viscosity ( 2 -1m s )
τ  Dimensionless time  
X, Y Dimensionless cartesian 

coordinates 
U, V Dimensionless velocity 

components 
T    Dimensionless temperature 
S    Dimensionless Salinity 

rG  Grashof number 

mG  Modified Grashof number 

sP  Modified Prandtl number 

rP  Prandtl number 

sG  Modified Grashof number 
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